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It is shown that in the numerical solution of the Cauchy problem for systems of second-order ordinary differential equations, 
when solved for the highest-order derivative, it is possible to construct simple and economical implicit computational algorithms 
for step-by-step integration without using laborious iterative procedures based on processes of the Newton-Raphson iterative 
type. The initial problem must first be transformed to a new argument - the length of its integral curve. Such a transformation 
is carried out using an equation relating the initial parameter of the problem to the length of the integral curve. The linear 
acceleration method is used as an example to demonstrate the procedure of constructing an implicit algorithm using simple 
iterations for the numerical solution of the transformed Cauchy problem. Propositions concerning the computational properties 
of the iterative process are formulated and proved. Explicit estimates are given for an integration stepsize that guarantees the 
convergence of the simple iterations. The efficacy of the proposed procedure is demonstrated by the numerical solution of three 
problems. A comparative analysis is carried out of the numerical solutions obtained with and without parametrization of the 
initial problems in these three settings. As a qualitative test the problem of the celestial mechanics of the "Pleiades" is considered. 
The second example is devoted to modelling the non-linear dynamics of an elastic flexible rod fixed at one end as a cantilever 
and coiled in its initial (static) state into a ring by a bending moment. The third example demonstrates the numerical solution 
of the problem of the "unfolding" of a mechanical system consisting of three flexible rods with given control input. © 2004 Elsevier 
Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We will consider the Cauchy problem for a system of second-order ordinary differential equations solved 
for the highest order derivative: 

ii = f ( t ,u , (~) ,  U(to) = Uo, ti(to) = 1)o (1.1) 

where u(t) is an unknown vector function describing the displacement of a point in Euclidean n-space, 
and the vector function f = f(t, u, ~), acting as an operator f :  ~2~ + t __+ Rn, is the acceleration of the 
point in the space R n, depending on the time t ~ ~,  the displacement and the velocity a) = ti. 

The mathematical modelling of many physical phenomena reduces to the system of equations (1.1). 
In particular, applied problems associated with the modelling of dynamical processes in structures and 
continuous media lead to Eqs (1.1) (see, e.g, [1-6]). 

We will assume that f~  C2(D), where D C R 2n + 1 is some domain in Euclidean space ~2~ + 1. Then, 
as is well known [7, 8], the Cauchy problem has a unique solution in D for given initial data Y0 = 

r [u0, v0, to] ~ D. Thus, under the conditions just formulated, through any point of the domain D there 
passes a unique smooth integral curve (IC) y(t) = [u(t), a~(t), t] r that satisfies the system of equations 
(1.1), and the solution of problem (1.1) reduces to constructing an IC in the domain D passing through 
the point x0. 

We will denote the scalar product of the functions f and g and the norm of a function f in some 
Euclidean space byfg and Ilfl[ = "f-if, respectively. 

The purpose of this paper is to study the system of equations (1.1) from the position of method of 
parametric continuation of the solution [9] and to construct effective implicit computation schemes for 
solving it when a certain additional change of variables, called the best parametrization, is applied (see 
[10-151). 
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2. P A R A M E T R I Z A T I O N  OF THE E Q U A T I O N S  

Introducing in D a smooth real function ~. = ~.(y) = )~(u, 19, t) E C3(D), let us replace the independent 
variable t by the parameter ~.. When that is done, the differential characteristic J of the function k - 
namely, its total derivative with respect to time along an IC: J (y )  = J(u,  19, t) = )~[y(t)] - is of major 
importance. We shall assume that J (y )  ¢ 0 in D. Then the parameter function may be represented in 
terms of its differential characteristic as a definite integral along some IC: 

t 

)~(y) = )% + I J [ Y ( t ) l d t  

to 

By changing to the parameter )~ we can convert the system of differential equations (1.1) into an 
autonomous first-order system in the phase space N2n + 

y' = V ( y ) ,  y(Xo) = Yo, F = J - l [ o , f ,  1]r~ C2(D) (2.1) 

where the prime denotes the total derivative with respect to ~. 
The function J has the meaning of a differential normalizing factor in the transformation from the 

time t to the parameter ~.. In particular, i f J  - 1, then )~ = t + (~.0 - to). Through parametrization one 
can improve the metric properties of the right-hand side of Eq. (2.1). It has been shown [9-14] that 
the optimum improvement (i.e. the best parametrization) is achieved when ~. is taken to be the length 
of an IC in the Euclidean space R 2~ + r. Corresponding to this choice is the following equation in 
differential form 

d~. 2 = d t  2 + d u d u  + d v d v  

or the equation for the normalizing factor 

J ( y )  = 

Obviously, 

(2.2) 

,,/1 + v o  + f ( y ) f ( y )  (2.3) 

j - l (y)  = t' 

It follows from formulae (2.1)-(2.3) that in the best parametrization the norm of the right-hand side 
of Eq. (2.1) has an important property: it equals unity in the domain D. The change to the argument 
)L also ensures the best conditionality for the linearized systems of equations obtained when implementing 
step-by-step procedures for the numerical constructing of ICs in problem (1.1) by parametric con- 
tinuation, and in this sense the change to )~ has been called the best parametrization and )~ itself the 
best parameter. 

3. THE N U M E R I C A L  S C H E M E  FOR SOLVING THE 
CAUCHY  P R O B L E M  

Problem (1.1) or (2.1) can be solved by using various approximate numerical integration schemes for 
systems of differential equations [16-18], such as the Runge-Kutta, Adams-Moulton, Milne, etc. 
methods. Special mention should be made among these of methods of second- and third-order precision, 
which lead as a rule to implicit integration schemes, such as the method of central differences, and the 
Houbolt, Newmark and Wilson methods [24]. Much use has been made in the practical solution of 
dynamics problems of Wilsons method, which is a certain modification of the linear acceleration method, 
in which, when integrating Eq. (1.1), one replaces the acceleration//by piecewise-linear function over 
a small interval of time (the integration stepsize). Consequently, the velocity x) = ti and the displacement 
u itself are approximated by second- and third-order splines, respectively. 

We shall consider a generalization of the linear acceleration method to the system of equations (2.1) 
with the best parametrization [15, 19]. To that end, we will represent the unknown vector t as y = 

T T n + l  [u, x] , where x = [19, t] ~ • , that is, we single out from y a vector x which uniquely defines the 
acceleration ti = J19'. Accordingly, the right-hand side of Eq. (2.1) will be written as F = j-1 [19, g] r, where 
g = [f, 1] r. 
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Relations (2.2) and (2.3) imply the equality j-2 + u 'u '  + aJ'aJ' = 1, whence, in view of the formula 
ao' = j- i f ,  we obtain j-a = .~ 1 - u'u%]l + ft. With this expression, system (2.1) can be rewritten as a 
system of differential equations 

u' = J - ' v  (3.1) 

x' = j - l g  = .,/-(_ u'u'e(u, x) (3.2) 

where e(u, x) = g i l l  + f f  = g/llgll is a unit vector in the space ~n + a, collinear with the vector g. In 
what follows we shall use the first equality of  (3.2) in the form 

x '=  (3.3) 

w h e r e  ~ = j - l g  = ~ ,  j - l IT ,  f = j If. 
We will divide the domain of variation of  the integration parameter  E into intervals by points 

E0 < ~1 < ... < ~n < ... and approximate the variable x' (in parametrized form) in each interval 
~- ~ (En, ~n + 1) by a linear function 

' T~n ( '  --X'  n) (3.4) x'(~v) = x , +  x,+ l 

where "~ = ~, - ~,n A~n = ;~n + 1 - ;~n. 
We now integrate equality (3.4) with respect to the parameter  x. Taking the representation x = [v, t] r 

into account, we obtain 

2 

v( n+x) = (3.5) 

2 
t(~,n+'C) = tn + ~tn + 2 - -~ ( tn+l - t ' n )  (3.6) 

To determine the function u()v n + z), we use Eq. (3.1). Replacing j-a by a linear approximation on 
the basis of formula (3.4) and using equality (3.5), we obtain an approximation of third-order precision 
for u'(~,) 

-, [ - 1 ,  1 -1 1 u'(~'n+,[) = t '(Ln+'OV(~'n+'O = Jn 1Jn+Z Jn Vn+-~n(Jn+l -J -n l ) vn  + 

3 T, 2 FJ-n I , -1 ' l  "~ -1 , 
+ ( J ; ' ÷ , - J .  ) o . j  + 7 ~ 2 ( J n + l - - J - n l ) ( 1 ) n + l - - l ) n )  

2A~., 

Hence,  integrating with respect to "~, we get an approximation for u(Tv) also 

I;21- .-1 , _ j n l ) . 0n ]  + u(~,. + ' 0  = un+'CJ-~lVn+2LSn On+ ~_~n(jn. -1 

3 -1 ,[4 . j - I  
, , - I  , ]  - I  , _ 1),n) z V Jn " - v , ) +  -1 _ j , ) v  n +77~2  ( n + l _ j .  )(Vn+l 

+ 3-'~n [_"~- ( 1)n + 1 (Jn+l  8A~, n 

(3.7) 

Setting z = A)vn in expressions (3.5)-(3.7), we obtain the following implicit numerical scheme for 
determining the quantities un + ] = u(~n + 1) and xn + 1 = x(~,n + 1) 

A~'n - l  (A~'n) 2 I 
un ÷ l = un + --~--(J. + l - J- , l)° ,  + ~ [ ( 3 J ~ +  1 + J ~ l ) ~ +  l + (5J~1+ 1 + 3J~l)fn]  

(3.8) 

zX~V. 
x ,+ l  = x , + ' - g " ( L + l  + g , )  

where fn = f(un, xn), and the initial data u 0 and x0 = [aJ0, t0] v are known. 

(3.9) 
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The numerical scheme (3.8), (3.9) has second-order precision for the vector x = [v, t] r and the 
displacement vector u, since the unknown vector x was approximated by a second-order spline and the 
displacement by a piecewise-smooth polynomial of the fourth order with continuous derivatives. 

4. THE I T E R A T I V E  PROCESS  

The numerical scheme (3.8), (3.9) just obtained is implicit with respect to the unknown Yn + 1 = 
[un + 1, xn ÷ 1] r e N2~ + ], and therefore, at each step, it is required to solve a system of 2n + 1 non- 
linear equations. This solution may be treated from the viewpoint of the theory of smooth mappings 

2~+1 [8] of the Euclidean space N , since it is a fixed point for a certain smooth diffeomorphic mapping, 
defined by the iterative scheme (3.8), (3.9) and acting on a compact subset of N2n + 1. To demonstrate 
this, we will rewrite the scheme (3.8), (3.9) in the form 

y = ~(y), ~(y) = yn+i/2+A~,.qfl(y) (4.1) 

The solution of problem (4.1) is the unknown Yn + 1, while the intermediate value Yn + ]/2 and the 
function q'(y) are determined from the data of the previous step by the respective formulae 

Y n +  l l2  = I n + 
A~'n .-1 (A~'n) 2 .-1 . ]  
T J ,  0,, + T J, l , ] ,  

A;L. I 
x , + T g "  J 

I IJ-](y)o, + A~,,H,(y) 1 
+ ( Y )  = L g(Y) ] (4.2) 

H,(y) = l { I 3 J - l ( y )  + J-hill(Y) + 5j-l(y)fn} 

Then the solution of the non-linear equation (4.1) is equivalent to determining the fixed points of the 
mapping 

= tl)(y), tl)E C2(D) (4.3) 

defined in the space ~ 2 n + l  

Lemma. For system (2.1), (2.2) with the best parametrization, the mapping (4.3) is defined in a 
bi-sphere Br, A(Yn + 1/2) with centre at the point yn + ]/2 = [un + 1/2, Yn + 1/2] T, where 

Br, A(Y. + 1/2) = {Y = [u, x]r: Itu- u.+ ,,2II -< A, Iix-x.+ l/2II -< r} (4.4) 

r = r(A~..) = T '  A = A(v.,A~..) = v.ll + A~,. (4.5) 

Proof. Let us estimate the norms of the components of the vector function ~(y) responsible for the norms 
II u - un + ]/2 II and I I x -  x .  + 1/2 II, respectively. Evaluating the square of the norm of the first component, we have 

IIJ'(y) . + 2 -- J-2(y)llv.ll2 + 2AX.J-'(y)l)nHn(Y ) + (AX.)211H.(Y)II 2 

It follows from expression (2.3) that 

j - l ( y )  = 1 -< 1 
~11 + 1)1) + f(y)f(y) 

for any values ofy. Using the last inequality and the triangle inequality, we obtain 

2 
f +4  ]n = 

= D n A ~ n {  + TL,+ (,o., + )' 
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Since 

it follows that 

Therefore 

f =  f <1 
~/1 + o19 + f ( y ) f ( y )  

Jig -I (y)~, + AZ.,H,(y)H ~ II v, ll + a4AZ., 

This enables us, with relation (4.1) and (4.2), to give an estimate 

A~..r 

Using the estimate 

I~ll~l,  ~ = J - ~ g =  g 
~1o0 + g(y)g(y) 

for the second component of the vector function q~(y), we obtain an estimate for the norm Ilx - x~ + 1/2 I[ also: 

A~, n 
ii x - x°  + ,,~l[ -< - 7 -  

In sum, we obtain formulae (4.4) and (4.5), which proves the lemma. 

Thus, the solution of  non-l inear  equat ion (4.1) is equivalent to determining the fixed points of  the 
twice continuously differentiable mapping )3 = ~(y ) ,  which is defined on the compact  set (4.4), (4.5). 

Remark 1. The manifold (4.4), (4.5) is non-isotropic in the subspaces of the vectorsx and u: the vector x satisfies 
an estimate which is not explicitly dependent on the preceeding point of the integrationyn = [un, vn, tn]r; the estimate 
for the displacement vector u, however, depends explicitly on v~. This reflects the fact that the difference scheme we 
have constructed does not give the velocity and the displacement equal treatment, which in turn results from the adapta- 
tion of the solution to the analytical characteristics of the IC being computed (which is in turn a corollary of the best 
parametrization). However, this property does not impede the construction of effective computational procedures. 

In what  foltows, the contractive proper ty  of  the mapping ~9 = qb(y) will be proved,  and the condit ion 
under  which this p roper ty  holds will be formulated.  

Theorem 1. A value of  the quanti ty AT, n always exists for  which a solution of  the non-l inear  equat ion 
(4.1) exists, is unique,  and can be constructed using the iterative process 

k + l yO (4 .6 )  
Y = ~(yk) ,  = Yn+l/e 

as the limit 

Y, + 1 = Y = limy k, k ---> oo 

Proof. Consider  the mapping (4.3), for  which, by the lemma, y e Br, A(y n + 1/2). Let  us est imate the 
difference quot ient  

~ ( ~ ;  y,, ye) = I[Y, yell 

for  two arbitrary vectors Yl, Y2 e Br, A(Yn + 1/2). Using relations (4.1) and (4.2), as well as the inclusion 
qJ E C2(Br, A(Yn + i/z)), we obtain o)(~;yl ,  Y2) _< C, where  the constant  C depends  on Vn and A ~  and has 
the form C = A~,nM(l)n, A ~ ) ,  with M(vn, AXn) ---> II w'(y~) II as A~,, ---> 0. Consequent ly ,  for  sufficiently 
small AXe, we have C < 1 and 11)31 -)3211 -< CIIYl -Yell ,  that  is, the mapping (4.3) is contractive in the 
bi-sphere Br, A(Yn + 1/2). This implies the s ta tement  of  the theorem.  
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Note  that, using relation (3.9), one can put  fo rmula  (3.8) in a fo rm in which un + 1 is expressed in te rms 
of  known values at the preceed ing  step and the values of  the componen t s  of  the vector  x = [~, x]r at 
the current  step. Indeed ,  it follows f rom (3.9) that  

-~ 2 2 
Jn+l+J-n 1 = ~ n ( t n + l - - t n ) '  L+ +L = S (On+I-V.) (4.7) 

By substituting expressions (4.7) into fo rmula  (3.8) we can rewrite the lat ter  as 

Ak,  _ 
1 tn)(Vn +51)n)+__~_[fn(tn+ 1 _tn)  -1 - + Jn  + l (On + 1 -- O n ) ]  Un+l = Un+~(tn+l + 1  (4.8) 

Finally, using the expression 

- t  2 
Jn+ l = "~n(tn+ l - t n ) -  J: 1 

which follows f rom the first re lat ion of  (4.7), we arrive at the fo rmula  

1 A ~ n  - - ]  - v . ) ]  ( 4 . 9 )  
U n +  1 = U n + ~ ( t . + l - t n ) ( O n + l + O . ) + T [ f n ( t n + l - - t . ) - J  n ( 1 ) n + l  

In this connect ion,  let us single out  a v e c t o r x  ~ ~n + 1 and consider  the cor responding  project ion of  
the i terative process  (4.6) on to  the subspace  ~n + 1. To do this, in accordance  with relat ions (4.1) and 
(4.6), we int roduce the i terat ion funct ion 

A k  n 
¢(u, x) = Xn+ 1/2 + --g--g(U, X) 

where  the variable u is the pa rame te r ,  and consider  the i terative process  in the subspace ~ + 1 (for 
fixed u) 

k + l Ok k + 1 o Akn x = = ~(u, xk), x ,+  l = x = l i m x  = l i m e  ~, x = G+--~---gn (4.10) 
k ----~ ~ k ----~ ~ 

The  iterative process  (4.10) obviously converges  provided  the mapp ing  2 = ~)(u, x), def ined for  any 
u in the space Br(xn + 1/2), r = A~n/2, is contractive,  that  is; provided that  A)~n < 2, the es t imate  being 
un i form with respect  to the p a r a m e t e r  u. 

Thus,  T h e o r e m  1 can be s t rengthened if the i terative process  to find xn + 1 and un + 1 is organized  as 
+ 1  follows: First de te rmine  the vector  x k by formula  (4.10), and then  compu te  the var iable  u = u k + 1 

by the following formula ,  which follows f rom (4.9) 

k + l 1 .  k + l A~'n ^ . t k  + u = u k + ~ ( t  - tn)(Ok + 1 + On) + - -g - [ fn (  1- tn ) -d -n l ( l~k+l -On)  ] 

o Ak,  i (AZ,,)2 _-i -~ 
u = u .+-- f -J- .  ~ . + - - - T - J .  j .  

(4.11) 

In  sum, we have proved  the following theorem.  

Theorem 2. A solut ion of  non- l inear  equa t ion  (4.1) exists and is unique,  provided that  A~n < 2; it 
can be cons t ruc ted  using the i terative process  (4.10), (4.11). 

Remark 2. The condition A)~n < 2, which ensures convergence of the iterative process (4.10), is sufficient but 
not necessary. In some problems the integration stepsize that guarantees convergence may considerably exceed 
unity. An example is the problem, considered below, of the free vibrations of a flexible rod. 

Remark 3. An analogous contractive property for the vectorx = Iv, t] v may also be constructed for other methods 
for approximating the solution vector (the Newmark, Wilson, Houbolt, etc. methods [2]) which are widely used 
for the numerical integration of dynamic systems. 
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5. E X A M P L E S  

Three problems will be considered below. In all cases, the numerical results obtained with an without 
using the parametrization procedure will be compared. The effectiveness of the implicit integration scheme 
(4.11), (3.9) for the parametrized equations will be demonstrated compared with the integration of the 
initial (non-parametrized) equations by an implicit scheme of the linear acceleration method [3, 4] 

A t  ] A t  n 
Un+ 1 = U n + A t n l ) n + - - ~ - ( f n + l + 2 f n ) ,  On+l = D n + - ' ~ ( f n + l + f n  ) (s.1) 

These formulae follow from relations (3.8), (3.9) or (4.11), (3.9) if we set A)~ n = At n and Jn -I = 1 for all 
values of n. 

The "Pleiades" test problem was solved for several values of the integration stepsize, constant over 
some interval along the IC or the interval in which the initial argument of the problem varied. 

For the second and third problems, the solution was implemented with automatic control of the length 
of the integration stepsize along an IC of the solution: The step was chosen subject to the condition 
that the local integration error, evaluated using Richardson extrapolation [16], should not exceed a 
prescribed value 6. For comparison with known solution procedures, both problems were integrated 
using an implicit linear acceleration scheme (5.1) without a parametrization procedure, but using 
Newton-Raphson iteration as well as a modified version of that method. The solution was similarly 
implemented with the length of the integration stepsize along the axis of the time parameter  controlled 
by estimating the local integration error (otherwise the integration time turned out to be too long). 
The Jacobian was evaluated numerically, while the corresponding system of algebraic equations was 
solved by Cholesky's method. In the modified Newton-Raphson method, the Jacobian and the solution 
of the system of algebraic equations were computed for each 10 steps of the time parameter.  If the 
iterations diverged or their number exceeded some limiting value (taken to be 20), the integration 
stepsize was halved, and the computations were repeated from the preceding instant of time. 

The convergence of the iterative processes was monitored from the value of the computation error 

/ I  (k) ( k - l )  "~ 
e~ k) = max|!Ui --__.U ui i |  

t <l, j 

where k is the number of the iteration, i is the index of the component of the solution vector, and di = 
max( lui(k)l, 1) is a mixed scaling coefficient. The iterations were broken off when e (k) < e, where e is a 
given admissible error for halting the iterations. 

The "Pleiades"problem o f  celestial mechanics  [16]. The motion of seven stars with coordinates xi(t) ,  
yi(t) and masses m i = i(i = 1, . . . ,  7) moving in the same plane is described by a system of differential 
equations 

x j  - x i 
x'i = Z m i  - ' Jii = Z m i Y J - Y i  

j ~ i  rij j ~ i  rij 

= , 2 ,  3/2 
rij [ ( x i - x j )  z + ( y i - y j )  I , i , j  = , ..., 7 

(5.2) 

The initial data are 

xl(0)  = x2(0) = 3, x3(0) = -1,  X4(0 ) = -3 ,  xs(0) = -x6(0) = x7(0) = 2 

Yl(0) = -Y2(0) = 3, Y3(0) = 2, Y4(0) = ys(0) = 0, Y6(0) = -Y7(0) = -4  

~ l ( 0 )  = ~2 (0 )  = ~3 (0 )  = ~4 (0 )  = ~5 (0 )  = 0 ,  ~6(0)  = 1.75, ~7 (0 )  = - 1 . 5  

)1(0) = )2(0) = )3(0) = 0, )4(0) = -2.25, )5(0) = 1, )6(0) = )7(0) = 0 

(5.3) 

The interval of integration with respect to the time parameter  t is [0, 3]. The integration stepsize 
was chosen subject to the condition that the local computation error should not exceed an admissible 
value of 6 = 10 -a°. The iterations were broken off when e k < e = 10 -12. 
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The results of solving the problem are shown in Figs 1-3. The integration was carried out for several 
values of the stepsize AX with respect to the parameter of IC length for the parametrized equations 
and series of values of the stepsize At along the given t-interval for the initial problem (5.2), (5.3). 

In Fig. 1 we show graphs of the solutions Xl(t),  yl(t) obtained for the parametrized equations for 
stepsize values A~, = 0.01, 0.1, 0.5 and 1.0 (a) and those obtained by integrating Eqs (5.2) and (5.3) for 

-4 3 stepsize values At = 10 , 10- and 10 -2 (b). As can be seen, the solution of the parametrized equations 
varies only slightly when the integration stepsize with respect to IC length is increased substantially (by 
a factor of 100), while the solution of the equations without parametrization varies considerably when 
At is increased to 10 -2. It is 3 also clear that the precision of the integration when At > 10- is unacceptable; 
when At > 10 -2 the iterations begin to diverge. When the parametrized equations were integrated, the 
iterations continued to diverge as AX increased, but the precision of the integration remained unacceptable 
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only when A)~ = 1. An analogous situation was described in [20] for the numerical integration by explicit 
methods of differential equations with delayed argument. 

For every interval A~ in step-by-step integration of the parametrized equations, there is a certain 
corresponding interval At, whose length varies as one moves along the IC. Thus, the parametrization 
automatically adapts the stepsize At to the nature of the variation in the IC. This fact is reflected in 
Fig. 2, where the At(t) is plotted for values of A)~ = 0.01, 0.1, 0.5 and 1.0, as represented by the dots. 
Straight-line segments of different lengths correspond to integration of the equations with a constant 
stepsize without the use of parametrization. The dashed line (labelled 1) in Fig. 2a represents a certain 
limiting value of the integration stepsize At, which guarantees acceptable precision of the integration. 
The straight line labelled 2 corresponds to the graphs of the solutions xl(t), yl(t) represented by the 

2 2 dashed curves in Fig. lb for At = 10-. As indicated above, integration with At > 10- leads to diverging 
iterations. This is shown by the straight-line segments (labelled from 2 to 11, corresponding to 
At -~ 0.010, 0.011, 0.012, 0.015, 0.020, 0.060, 0.100, 0.140, 0.180 and 0.220); these segments end at certain 
values of the time parameter t at which the iterative process begins to diverge. 

The dots in Fig. 3 represent the number of iterations as a function of time, when the parametrized 
equations are integrated with stepsize A)~ = 0.1 and A)~ = 1.0. 

Modelling the dynamics of a flexible cantilever rod initially coiled in a ring by a bending moment. We 
will now consider the problem of the geometrically non-linear dynamic behaviour of an elastic flexible 
rod attached as a cantilever at one end. In its initial state the rod is coiled into a ring by a bending 
moment applied at the free end and equal to 2 ~ J / L ,  where EJ is the bending stiffness of the rod and 
L is its length. At time t = 0 the action of the moment is discontinued and a dynamic process (uncoiling) 
begins in the plane, under the influence of elastic and inertial forces. 

The problem is solved in a finite-element setting, using the approach described in [3, 4]. Gravitational 
forces and damping of the vibrations are not taken into account. 

Each element (see Fig. 4) is associated with a local (element) system of coordinates system oxy in 
such a way that one of the axes (say, ox) passes through the nodes of the element 0.1. Displacements, 
angles of rotation, linear and rotational velocities of the element axes performing the motion relative 
to a fixed system of coordinates OXY are rigorously taken into account. The shape functions were taken 
to be quasi-static approximations of the local displacements and angles of rotation of cross-sections of 
a rod element in variables of the element system of coordinates. They are constructed by solving an 
homogeneous linear static problem depending on the angles of rotation of the nodal sections of an 
element 00, 01 as functions of time t. The rod is considered to be extensible. It is also assumed that the 
cross-sections of the elements may be twisted and sheared relative to one another, that is, mean shear 
deformations are taken into account. To simplify the computations, the distributed mass characteristics 
of the rod (masses and moments of inertia) and the load are reduced to the nodes of the finite-element 
model. The generalized coordinates were taken to be the absolute coordinates of the nodes and the 
angles of rotation of the cross-sections of the rod associated with those nodes relative to the system of 
coordinates OXY. 

The non-linear equations of motion are written in generalized coordinates in the form of Lagrange 
equations of the second kind 

~U x 
mii]i + ~ = ai. i = 1 . . . . .  N (5.4) 
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where m i is the ith element of the diagonal matrix of masses, U x = U (1) -t- . . .  -t- U (N) is the potential 
energy of the system, where U (~) is the potential energy of the kth element, Qi is the generalized force 
corresponding to the generalized coordinate qi with subscript i and N is the number of generalized 
coordinates. In what follows, to simplify the notation, we will omit superscripts, with the understanding 
that all the notation refers to the kth element. 

The potential energy of an element under finite deformations (taking into account terms quadratic 
in the angle of rotation of cross-sections) may be written in the form 

I~EJ u -- i lT [{a , -~o )2+  31¢(~1 +0t0-213) 2] NZll  
+ E F J  

The longitudinal force N, which is constant as a function of the length of the element, and the 
dimensionless coefficient ~: are defined as 

{ 2 j} 
Ul I 1 5 ( 0 ~ 1 + 0 ~ 0 _ _ 2 ~ ) 2  ( 1 +  | 2 E J ~ - I  

N = E F T  + ~[~(~l  - 0~0) 2 + , K = lZGFc) 

The longitudinal displacement of node 1 in the direction of the ox axis relative to node 0 is equal to 
Ul = ~/(X1 -Xo) 2 + (Ya - Yo) 2 - l, where I is the length of the element before deformation, ~ is the angle 
of rotation of the moving element system of coordinates oxy relative to the inertial system of coordinates 
OXY, and E J, EF and GFc are the bending, tensile-compressive and shear stiffness, respectively. 

As a preliminary, a solution was sought to the static problem of the strong deformation of an initially 
rectilinear rod by a bending moment of the value indicated above. The problem was solved using the 
best parametrization for the static state equations [15]. The resolvent system of equations in that case 
has the form 

ql 

qN 

F? 
= i (5.5) 

where qi, F* (i = 1, . . . ,  N) are the generalized coordinates and amplitude values of the external nodal 
forces and moments corresponding to these coordinates. The load parameterp,  which was varied within 
the limits 0 to 1, was related to the argument (the IC length) by the differential relation 

d p =  j - i  _ 1 

dX ,/I + ff 

where f is the vector of the right-hand sides of system (5.5), solved for the derivatives dqi/d p .  
As a result, a configuration was found - a circle of radius L/(27t) which defined the initial state of 

the system for the solution of the dynamic problem. 
After parametrization, the system of equations (5.4) becomes 

~m/( ' 19i t' 1 , 1 Q OUX~, qi = "  J =  ~/1+ +01) 
1)i = i-- Oq i j = 7 '  7I' q q  

The vector q = [ql  . . . . .  qN] v is the analogue of the vector u in (1.1), v = [1.) 1 . . . . .  I)N] T. 
The following parameter values were chosen for the computations: L = 10 m, EF = 2.88 × 107 N, 

2 7 EJ = 960 N m and GF~ = 1.108 × 10 N; the mass density was p = 2800 kg/m 3. The rod was divided 
into 100 elements of equal length. 

The integration was carried out in the interval from 0 to 30 s. The integration stepsize with respect 
to the length parameter was adapted to the process of constructing the IC on the basis of the estimated 
local integration error. The maximum admissible local error was taken to be 10 -9 . Without adaptation 
of the stepsize to the IC, the integration turned out to be inefficient, requiring large computational 
resources. The iterations were monitored by estimating the error, with the maximum admissible error 
taken to be 10 -1° . Some results of the computations are shown in Figs 5-7. 
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Figure 5 shows different configurations of the rod corresponding to motion in the interval 0 < t < 4.4 s 
and arranged in time with a stepsize of about 0.1 s (curves 1-44). Curve 0 is a circle corresponding to 
the initial (static) configuration of the rod. Absolute coordinates (in meters) are marked off along the 
axes of the graphs. Figure 6 plots the nodal coordinates X and Y (measured along the ordinate axis in 
meters) as functions of the time t (measured along the abscissa axis in seconds). The curves were 
constructed for several nodes, whose numbers are indicated on the right. The nodes were numbered 
successively from I to 101, beginning with the fixed end and ending with free end. The dots in the left- 
hand part of Fig. 7 show how the integration stepsize was varied with its adaptation to the construction 
of the IC based on an estimate of the local computation error; the dots in the right-hand part of the 
figure represent the number of iterations as a function of time; obviously, with the given parameters 
of the computational precision, the mean number of iterations was three. 

Integration of the equations of motion using algorithm (5.1) with simple iterations, but without the 
parametrization procedure, proved to be practically impossible: The iterative process diverged at the 
beginning of the integration for all reasonable values of the integration stepsize. 

Integration of the non-parametrized equations based on formulae (5.1) using Newton-Raphson 
iterations enabled us to solve the problem. This approach, however, turned out to be less effective 
compared with the method of simple iterations in the parametrized case, because of the complexity of 
the algorithm being used, which involves computation of the Jacobian and the solution of a linearized 
system of algebraic equations. The time required to integrate the non-parametrized problem using 
Newton-Raphson iterations turned out to be about 1.8 times longer than the time required to integrate 
the parametrized equations using simple iterations; moreover, the difference tended to increase markedly 
as the dimensionality of the problem (the number of finite elements) was increased. Integration of the 
problem using a modified Newton-Raphson method also yielded no advantage, needing about 1.5 times 
more time than integration of the parametrized equations. 

Modelling the dynamics of the unfolding of a system consisting of three flexible rods coupled by hinges. 
Consider a system of three flexible rods joined together in succession by hinges. It is assumed that the 
cross-sections of the rods have the same geometric and stiffness characteristics. The following parameter 6 2 values were chosen for the calculations: EF = 7.2 × 10 N, EJ = 60 N m ,  GFc = 2.7692 × 106 N, and 
mass density P = 2800 kg/m 3. 

The problem is solved in a finite-element setting, analogous to that used in the preceding problem 
of an uncoiling cantilever rod. Gravitational forces and damping of the vibrations are not taken into 
account. 

A finite-element model of the system is illustrated in Fig. 8, which illustrates the enumeration of the 
finite elements and nodes (the numbers of the finite elements from 2 to 6, from 9 to 13 and from 16 
to 20 are omitted). Node 1 is assumed to be stationary in space (xl = Yl -- 0), but it may rotate freely 
relative to the system of coordinates OXY. Each rod is of length L = 2m. The model consists of 21 
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finite elements and 24 nodes. All the finite elements of the system are identical and of length 
l = 0.2857 m. Nodes 8, 9 and 16, 17 from the hinges, which may be displaced without restriction. The 
initial configuration of the system is a straight horizontal line of length L = 2 m. This is the state 
corresponding, e.g. to a "packaging" of the system in which the angle between element 1 and the OX 
axis is q01(0) = 0, the angle between elements 7 and 8 is ~pz(0) = rt, and the angle between elements 14 
and 15 is % = 0. 

The system is "unfolded" by changing the angles, in a prescribed manner, between the axes of the 
rods where they are hinged together, and by similarly changing the angle between the axis of the rod 
hinged at node 1 and the direction of the OX axis. First the angle q02(t) is opened out in the clockwise 
direction, then the angle q)3(t) in the clockwise direction, and the angle q01(t) in the counterclockwise 
direction, as given functions of time, where t is the time in seconds. The law governing the "unfolding" 
of the system is defined by the formulae 

t - 5 •  
q01(0<t<5) = 0, q~I(5<t<15) = 1 0 2 '  q~l(t>15) = 

t 
cpz(O_<t<5 ) = -~n,  (pz(t>5) = -~ 

t - 5  
q)3(0_< t_< 5) = 0, q~3(5 _< t_< 10) = ---~--rc, ~03(t > 10) = -x  

The integration was carried out for motion of the system in the time range from 0 to 20 s. The 
integration stepsize with respect to the continuation parameter was adapted to the IC construction 
process on the basis of the estimated local computation error. The maximum admissible local error 
was taken to be 10 -s. The iterations, in turn, were monitored by estimating the computation error, whose 
maximum admissible value was taken to be 10 -1°. The results of the integration are shown in Figs 9-11. 
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In Fig. 9 we show various configurations of  the rod system corresponding to mot ion  in the interval 
0 _< t _< 10 s and arranged in time with a stepsize of  a round  0.5 s (curves 1-20) .  Figure 10 plots the 
coordinates  Xk, Yk as functions of  the time t for a selected series of  node  numbers  t. The dots in the 
left-hand par t  of  Fig. 11 represent  the changes in the integration stepsize as it adapts to the process of  
IC construction based on the estimated local computat ion error; the dots in the right-hand part represent 
the dependence  of  the number  of  i terations on the time. For  the specified values of  the precision 
parameters ,  the mean  number  of  iterations is 7-8. 

Computat ions  without  adapting the stepsize to the IC (based on the est imated local integration error) 
proved to be extremely ineffective. In tegrat ion of  the equat ions of  mot ion of  the structure under  
considerat ion using algori thm (5.1), without  using the parametr izat ion procedure,  is practically 
impossible, since simple iterations diverge at the very start of  the integration for all reasonable values 
of  the integration stepsize. 

As in the previous problem, integration of  the non-parametr ized  equat ions using N e w t o n - R a p h s o n  
iterations or a modified version thereof enabled the problem to be solved. However,  this was less effective 
compared  with the procedure  of  integrating the parametr ized equat ions using simple iterations. The  
time required turned out  to be about  1.6 times longer for N e w t o n - R a p h s o n  iterations and 1.4 times 
longer for modified Newton -Raphson  iterations. Moreover,  the difference between the computing times 
increased as the dimensionali ty of  the problem increased. 

This research was suppor ted  financially by the Russian Founda t ion  for Basic Research (03-01-000- 
71, 01-01-00038). 
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